Vibration Isolation

Isolator Natural frequencies **fn Undamped**

$$fn = \frac{1}{2\pi} \sqrt{\frac{K}{M}}$$

Damped

$$fn = \frac{1}{2\pi} \sqrt{\frac{\mathrm{K} (1-\zeta^2)}{\mathrm{M}}}$$

ζ= Damping Ratio C/CcK= Spring Constant N/mM=Supported Mass kg

For effective vibration isolation the isolator natural frequency fn sholud be less than 50% the lowest disturbing frequency fe

Elastomeric rubber-metal isolators are used to prevent transmission of vibration from (active) or to (passive) supported equipment.

Rubber based anti vibration mounts offer good isolation of disturbing frequencies fe of 12 Hz and above at reasonable cost.

To isolate frequencies below 12 Hz low frequency isolators should be used.

Examples	Natural	Isolate above		
	Frequency	Disturbing Frequency		
	fn Hz	fe Hz		
Air systems	1.5+	3+		
Helical Coil spring systems	2.5+	5+		
Compare				
Rubber Metal AV Mounts	6.0+	12+		

Mount theory

Farrat

Vibration transmissibility

Vibration transmissibility T (i.e. % or fraction) of the vibration which the isolators transmit to the supported equipment (passive) or from the supported equipment (active) is calculated using the formula

Transmissibility $T = \frac{1}{1 - R^2}$

Damped systems:

Transmissibility
$$T = \sqrt{\frac{1}{(1 - R^2)^2}}$$

$$\mathbf{R} = \frac{fe}{fn} \qquad \mathbf{Q} = \frac{1}{2 \text{ C/Cc}}$$

fe - disturbing frequency can be determined by measurement. The isolator natural frequency *fnd* is given by:

$$fnd = \frac{1}{2\pi} \sqrt{\frac{\text{Ktd}}{\text{M}}}$$
 Hz

Ktd = Sum of Isolator Dynamic Spring Constants (K₁+K₂+K₃...) N/m

$\mathbf{M} = \mathbf{Supported}$ system mass kg

For natural rubber and coil spring isolators static and dynamic spring constants are the same.

Sources of vibration in rotating machines		
Source	Disturbing Frequency fe Hz	
Primary out of balance	1 x rpm x 0.0167	
Secondary out of balance	2 x rpm x 0.0167	
Shaft misalignment	2 x rpm x 0.0167	
Bent Shaft	1 & 2 x rpm x 0.0167	
Gears (N=number of teeth)	N x rpm x 0.0167	
Drive Belts (N=belt rpm)	N, 2N, 3N, 4N x 0.0167	
Aerodynamic or hydraulic forces	(N = blades on rotor) N x rpm x 0.0167	
Electrical (N=synchronous frequency)	N x rpm x 0.0167	

Significant problems occur when the disturbing frequency *fe* is near to or coincident with the natural frequency of the supporting structure (floor, foundation or subsoil).

Damping Factor			freq	uency ra	ntio R fe	/fn		
C/Cc	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
0.05	20	66	80	87	91	93	94	95
0.10	19	64	79	85	89	91	93	94
0.15	17	62	76	83	87	90	91	93
0.20	16	59	74	81	85	87	89	91
0.30	12	52	67	75	80	83	85	87
		Perc	centage	Isolatior	n Efficien	су		

www.farrat.com

Vibration Isolators Undamped

Force equation

 $\mathbf{M} \mathbf{A} + \mathbf{K} \mathbf{z} = \mathbf{F}(\mathbf{t})$

- **M** = Mass Kg
- $A = Acceleration m/s^2$
- **K** = Spring Constant N/m
- \mathbf{F} = Applied force N
- $\mathbf{z} = \text{Deflection m}$
- $\omega = 2\pi f$

			Units
Displacement response:	s S _r =	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	m
Velocity response	$V_r =$	<u>F ω</u> K-M ω ²	m/s
Acceleration response	$A_r =$	$\frac{F \omega^2}{K-M \omega^2}$	m/s ²
Force transmitted	F _r =KS _r =	<u> </u>	Ν

Vibration Isolators Damped

Force equation

MA +CV+ Kz = F(t)

Inertia force + damping force+ spring force= applied force **M** = Mass Kg **A** = acceleration m/s² **V** = Velocity m/s **C** = Damping coefficient Ns/m **K** = Spring Constant N/m

- \mathbf{F} = Applied force N
- z = Deflection m $\zeta = Damping ratio C/Cc$
- Cc = 2/KM

		Units
Displacement response:	$S_r =$	$\frac{F}{K_{\textrm{s}}/(1+(2~\varsigma)^2)} \qquad m$
Velocity response	$V_r =$	$\frac{F\;\sqrt{(K/M)^*(1{\text -}\xi^2)}}{K\!$
Acceleration response	$A_r =$	$\frac{F(1{-}\xi^2)}{M\!$
Force transmitted	F _r =KS _r =	$\frac{F}{\sqrt{(1+(2\zeta)^2)}}$ N

Damping is expressed as a ratio C/Cc (ζ) which is a fractional measure of vibration energy absorbed by the isolator and not given back to the isolated equipment but dissipated into heat within the isolator.

Rubber metal anti vibration mountings are generally made using **NR** Natural Rubber which has low damping.

This is to

- a) Provide efficient vibration isolation
- b) Avoid excessive heat build up when isolating active vibration sources.

Where oil and other contamination is present the anti vibration mount must be designed so as to prevent the contaminants coming in contact with the rubber. Alternatively **NBR** (Nitrile) rubber isolators can be used, which have high oil and chemical resistance.

Phase lag (angle)

When a damped isolator is subject to an input vibration the reactive response lags behind the input which can be expressed as a phase lag (angle). The greater the phase lag, the greater the damping and dissipated energy.

Phase Lag between response and excitation is given by:

Phase lag (angle) $\varphi = \tan^{-1} (1/Q(\omega / \omega_0 - \omega_0 / \omega))$

$$\omega_0 = \sqrt{\frac{K}{M}}$$

 $\omega = 2\pi f e$

K = Isolator Spring Constant N/mM = Supported Mass kgfe = disturbing frequency Hz

Damping is required where movement of the supported equipment must be minimised especially at resonance. Damping is also required when shock is to be absorbed.

Isolators with	C/Cc	Product
No damping	0	Helical Springs
Low damping	0.01	NR Natural Rubbers
Moderate damping	0.05	CR Neoprene / Chloroprene
Rubbers		
Good damping	0.1	NBR Nitrile Rubbers
High damping	0.2- 0.3	Helical spring with viscous
		damping

Against receipt of full information free advice and proposals will be given for the use of all Farrat products. A charge may be made where a detailed site survey is required involving vibration measurements.

DTD - Anti Vibration - 10a Mount theory and selection

A = acceleration m/s² V = velocity m/s D = displacement m C = damping coefficient Ns/m K = spring constant N/m P = Peak vibration force N f = frequency Hz Relationships between vibration units RMS = $\sqrt{2^*}$ (Peak) $\omega = 2\pi f$ A = ωV V = A/ ω = A/ $2\pi f$ V = ωD D = V/ ω

The above formula are valid for both vertical and horizontal vibrations

Vertical Axis Z Longitudinal Axis Y Transverse Axis X

Distribution of Load on unsymmetrical supported mass

Total Load	Lt
L.A	Lt*((b-c)/b)*(d/a)
L.B	Lt*(c/b)*(d/a)
L.C	Lt*(c/b)*((a-d)/a)
L.D	Lt*((b-c)/b)*(((a-d)/a)

It is important to aim for as near as possible the same static deflection for each isolator by selecting suitable sizes and stiffnesses to match loads at each point.

Static deflection at A mm = L.A/K.A etc.

K.A= Vertical Spring Constant of isolator at **A** N/mm **L.A**= Static Load N at **A**

Vertical Natural Frequency

$$fnv = \frac{1}{2\pi} \sqrt{\frac{\mathrm{Kt} * 1000}{\mathrm{M}}}$$

M= total equipment mass kg K.T = K.A + K.B + K.C + K.D N/mm

When specifying Isolators it is important to ensure that the vertical and horizontal isolator natural frequencies are less than 50% of the lowest significant disturbing frequencies (determined by rotating speeds) or by measurement.

Farrat

Natural frequencies and Coupled Modes

In most applications the vertical natural frequency of an isolation system is considered to be the most important. However the position of the isolators in relation to the equipment Centre of Gravity (C/g) should be taken into account.

Uncoupled Modes

Isolators are in the same horizontal plane as the C/g. Vertical, horizontal and rotational modes are uncoupled.

Coupled Modes

Isolators below the C/g The motion of the system is a combination of vertical, horizontal and rotational motion coupled with rocking about a lower or upper rocking centre.

Stability limit

The maximum distance H of isolators below the C/g is given by an equilateral triangle connecting isolators to each other and the C/g.

Determination of undamped Vertical Natural Frequency from static vertical deflection

$$fn = 15.76 \sqrt{\frac{1}{\delta}}$$

 δ = static deflection (mm)

DTD - Anti Vibration - 10a Mount theory and selection

Rubber Metal Vibration Isolators

Rubber is produced in Natural,Synthetic or Thermoplastic forms

NR Natural.

Very high resilience Low damping for maximum vibration isolation efficiency. Very low creep. Low chemical and oil resistance

Typical Applications

Low frequency anti vibration mountings Structural bearings

Synthetic rubbers

Synthetic rubbers come in many formulations depending on application requirements.

Commonly used for anti vibration mountings requiring damping and or good oil and chemical resistance.

Optimium support design for Rubber Isolators

The information contained in this brochure is intended to be a guide only. We suggest product samples be tested and approved based on your intended applications. We reserve the right to alter specifications or withdraw products with or without prior notice.

www.farrat.com

NBR Nitrile.

Moderate resilience Damping ratio C/Cc= ζ = ca 0.10 Low creep High oil and chemical resistance

Typical Applications

Anti vibration mountings in hydraulic and other chemical environments. Shock absorption pads Anti vibration pads for plant and machinery

CR Chloroprene / Neoprene

High resilience Damping ratio C/Cc= ξ = ca 0.05 Low creep Moderate oil and chemical resistance Fire retardant properties

Typical Applications

Acoustic damping pads Floating floors Structural bearings Anti vibration pads Sensitive equipment isolation

For maximum elastically supported stability, positioning rubber metal isolators at an angle to the vertical loads the rubber in a combination of shear and compression. Ideally the shear and compression deflection should be almost the same. To achieve this the angle should be 30° .

To calculate vertical deflection δt (mm):

$$\delta t = \frac{F_t * H}{2 * A(G \sin^2 \alpha + Ec \cos^2 \alpha)}$$

G =Shear Modulus (N/mm²)

Ec = Compression Modulus (N/mm²)

 $\mathbf{H} = \text{Rubber height (mm)}$

A= Loaded rubber area (mm²)

 \mathbf{F}_{t} = Load (N)

Farrat.com

Farrat Isolevel Ltd. Balmoral Road, Altrincham, Cheshire WA15 8HJ. England GB Tel: +44 (0) 161 924 1600 Fax: +44 (0) 161 924 1616 email: sales@farrat.com